Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell Commun Signal ; 22(1): 248, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689334

RESUMO

BACKGROUND: Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS: To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS: In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS: BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.


Assuntos
Proteína Morfogenética Óssea 4 , Neoplasias da Mama , Metástase Neoplásica , Transdução de Sinais , Proteína Smad4 , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Proliferação de Células/genética
2.
Cancers (Basel) ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37760615

RESUMO

Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.

3.
Clin Transl Med ; 13(9): e1356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691350

RESUMO

BACKGROUND: Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura. There is a need to characterize the phenotypic diversity of breast cancer cell populations in the pleural microenvironment, and investigate how this varies across patients. METHODS: Here, we used single-cell RNA-sequencing to study the heterogeneity of 10 MPEs from seven metastatic breast cancer patients, including three Miltenyi-enriched samples using a negative selection approach. This dataset of almost 65 000 cells was analysed using integrative approaches to compare heterogeneous cell populations and phenotypes. RESULTS: We identified substantial inter-patient heterogeneity in the composition of cell types (including malignant, mesothelial and immune cell populations), in expression of subtype-specific gene signatures and in copy number aberration patterns, that captured variability across breast cancer cell populations. Within individual MPEs, we distinguished mesothelial cell populations from malignant cells using key markers, the presence of breast cancer subtype expression patterns and copy number aberration patterns. We also identified pleural mesothelial cells expressing a cancer-associated fibroblast-like transcriptomic program that may support cancer growth. CONCLUSIONS: Our dataset presents the first unbiased assessment of breast cancer-associated MPEs at a single cell resolution, providing the community with a valuable resource for the study of MPEs. Our work highlights the molecular and cellular diversity captured in MPEs and motivates the potential use of these clinically relevant biopsies in the development of targeted therapeutics for patients with advanced breast cancer.


Assuntos
Neoplasias da Mama , Derrame Pleural , Humanos , Feminino , Neoplasias da Mama/genética , Biópsia , Fenótipo , Análise de Sequência de RNA , Microambiente Tumoral/genética
4.
BMC Cancer ; 23(1): 459, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208678

RESUMO

BACKGROUND: Triple negative BCa (TNBC) is defined by a lack of expression of estrogen (ERα), progesterone (PgR) receptors and human epidermal growth factor receptor 2 (HER2) as assessed by protein expression and/or gene amplification. It makes up ~ 15% of all BCa and often has a poor prognosis. TNBC is not treated with endocrine therapies as ERα and PR negative tumors in general do not show benefit. However, a small fraction of the true TNBC tumors do show tamoxifen sensitivity, with those expressing the most common isoform of ERß1 having the most benefit. Recently, the antibodies commonly used to assess ERß1 in TNBC have been found to lack specificity, which calls into question available data regarding the proportion of TNBC that express ERß1 and any relationship to clinical outcome. METHODS: To confirm the true frequency of ERß1 in TNBC we performed robust ERß1 immunohistochemistry using the specific antibody CWK-F12 ERß1 on 156 primary TNBC cancers from patients with a median of 78 months (range 0.2-155 months) follow up. RESULTS: We found that high expression of ERß1 was not associated with increased recurrence or survival when assessed as percentage of ERß1 positive tumor cells or as Allred > 5. In contrast, the non-specific PPG5-10 antibody did show an association with recurrence and survival. CONCLUSIONS: Our data indicate that ERß1 expression in TNBC tumours does not associate with prognosis.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Receptor beta de Estrogênio/genética , Receptor alfa de Estrogênio/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Tamoxifeno/uso terapêutico , Prognóstico , Receptores de Estrogênio , Receptor ErbB-2/uso terapêutico , Receptores de Progesterona/metabolismo
5.
J Exp Clin Cancer Res ; 42(1): 90, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072858

RESUMO

BACKGROUND: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS: As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS: A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION: Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.


Assuntos
Cobre , Neoplasias , Animais , Camundongos , Diferenciação Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transdução de Sinais
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982737

RESUMO

Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Tamoxifeno , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Animais , Camundongos , Modelos Animais de Doenças , Receptores de Estrogênio/genética , Tamoxifeno/farmacologia , Fenótipo , Imuno-Histoquímica , Citometria de Fluxo , Transcriptoma , Camundongos da Linhagem 129 , RNA-Seq , Células Epiteliais , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética
7.
Int J Radiat Oncol Biol Phys ; 114(3): 478-493, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934161

RESUMO

PURPOSE: Synchrotron-generated microbeam radiation therapy (MRT) represents an innovative preclinical type of cancer radiation therapy with an excellent therapeutic ratio. Beyond local control, metastatic spread is another important endpoint to assess the effectiveness of radiation therapy treatment. Currently, no data exist on an association between MRT and metastasis. Here, we evaluated the ability of MRT to delay B16F10 murine melanoma progression and locoregional metastatic spread. METHODS AND MATERIALS: We assessed the primary tumor response and the extent of metastasis in sentinel lymph nodes in 2 cohorts of C57BL/6J mice, one receiving a single MRT and another receiving 2 MRT treatments delivered with a 10-day interval. We compared these 2 cohorts with synchrotron broad beam-irradiated and nonirradiated mice. In addition, using multiplex quantitative platforms, we measured plasma concentrations of 34 pro- and anti-inflammatory cytokines and frequencies of immune cell subsets infiltrating primary tumors that received either 1 or 2 MRT treatments. RESULTS: Two MRT treatments were significantly more effective for local control than a single MRT. Remarkably, the second MRT also triggered a pronounced regression of out-of-radiation field locoregional metastasis. Augmentation of CXCL5, CXCL12, and CCL22 levels after the second MRT indicated that inhibition of melanoma progression could be associated with increased activity of antitumor neutrophils and T-cells. Indeed, we demonstrated elevated infiltration of neutrophils and activated T-cells in the tumors after the second MRT. CONCLUSIONS: Our study highlights the importance of monitoring metastasis after MRT and provides the first MRT fractionation schedule that promotes local and locoregional control with the potential to manage distant metastasis.


Assuntos
Melanoma , Síncrotrons , Animais , Citocinas , Melanoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome , Linfócitos T
8.
Oncogenesis ; 11(1): 38, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821197

RESUMO

MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.

9.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626009

RESUMO

The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.

10.
Cell Death Differ ; 29(11): 2288-2302, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35606410

RESUMO

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Animais , Camundongos , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Drug Discov Today ; 27(1): 257-268, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469805

RESUMO

The development of novel therapeutics is associated with high rates of attrition, with unexpected adverse events being a major cause of failure. Serious adverse events have led to organ failure, cancer development and deaths that were not expected outcomes in clinical trials. These life-threatening events were not identified during therapeutic development due to the lack of preclinical safety tests that faithfully represented human physiology. We highlight the successful application of several novel technologies, including high-throughput screening, organs-on-chips, microbiome-containing drug-testing platforms and humanised mouse models, for mechanistic studies and prediction of toxicity. We propose the incorporation of similar preclinical tests into future drug development to reduce the likelihood of hazardous therapeutics entering later-stage clinical trials.


Assuntos
Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Drogas em Investigação , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Drogas em Investigação/farmacologia , Drogas em Investigação/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Humanos , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/tendências
12.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836954

RESUMO

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Assuntos
Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Mamárias Animais , Metástase Neoplásica , Microambiente Tumoral , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Neoplasias da Mama/cirurgia , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos , Humanos , Imageamento Tridimensional , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/terapia , Segunda Neoplasia Primária , Receptores de Fator Estimulador de Colônias
13.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768912

RESUMO

Metastasis reflects both the inherent properties of tumor cells and the response of the stroma to the presence of the tumor. Vascular barrier properties, either due to endothelial cell (EC) or pericyte function, play an important role in metastasis in addition to the contribution of the immune system. The Shb gene encodes the Src homology-2 domain protein B that operates downstream of tyrosine kinases in both vascular and immune cells. We have investigated E0771.lmb breast carcinoma metastasis in mice with conditional deletion of the Shb gene using the Cdh5-CreERt2 transgene, resulting in inactivation of the Shb-gene in EC and some hematopoietic cell populations. Lung metastasis from orthotopic tumors, tumor vascular and immune cell characteristics, and immune cell gene expression profiles were determined. We found no increase in vascular leakage that could explain the observed increase in metastasis upon the loss of Shb expression. Instead, Shb deficiency in EC promoted the recruitment of monocytic/macrophagic myeloid-derived suppressor cells (mMDSC), an immune cell type that confers a suppressive immune response, thus enhancing lung metastasis. An MDSC-promoting cytokine/chemokine profile was simultaneously observed in tumors grown in mice with EC-specific Shb deficiency, providing an explanation for the expanded mMDSC population. The results demonstrate an intricate interplay between tumor EC and immune cells that pivots between pro-tumoral and anti-tumoral properties, depending on relevant genetic and/or environmental factors operating in the microenvironment.


Assuntos
Células Endoteliais/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/patologia , Células Supressoras Mieloides/patologia , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas/fisiologia , Microambiente Tumoral , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Mamárias Animais/etiologia , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Células Supressoras Mieloides/metabolismo , Neovascularização Patológica/metabolismo
14.
Semin Immunol ; 54: 101512, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34763974

RESUMO

Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neutrófilos
15.
Biochem Pharmacol ; 192: 114726, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389322

RESUMO

Migration and invasion promote tumor cell metastasis, which is the leading cause of cancer death. At present there are no effective treatments. Epidemiological studies have suggested that ω-3 polyunsaturated fatty acids (PUFA) may decrease cancer aggressiveness. In recent studies epoxide metabolites of ω-3 PUFA exhibited anti-cancer activity, although increased in vivo stability is required to develop useful drugs. Here we synthesized novel stabilized ureido-fatty acid ω-3 epoxide isosteres and found that one analogue - p-tolyl-ureidopalmitic acid (PTU) - inhibited migration and invasion by MDA-MB-231 breast cancer cells in vitro and in vivo in xenografted nu/nu mice. From proteomics analysis of PTU-treated cells major regulated pathways were linked to the actin cytoskeleton and actin-based motility. The principal finding was that PTU impaired the formation of actin protrusions by decreasing the secretion of Wnt5a, which dysregulated the Wnt/planar cell polarity (PCP) pathway and actin cytoskeletal dynamics. Exogenous Wnt5a restored invasion and Wnt/PCP signalling in PTU-treated cells. PTU is the prototype of a novel class of agents that selectively dysregulate the Wnt/PCP pathway by inhibiting Wnt5a secretion and actin dynamics to impair MDA-MB-231 cell migration and invasion.


Assuntos
Citoesqueleto/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Transdução de Sinais/fisiologia , Proteína Wnt-5a/antagonistas & inibidores , Proteína Wnt-5a/metabolismo , Animais , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Ácidos Graxos Ômega-3/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Sci Adv ; 7(28)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233875

RESUMO

Intratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver. Furthermore, the transcriptome of the subclones varied according to their metastatic niche. We also identified a reversible niche-driven signature that was conserved in lung and liver metastases collected during patient autopsies. Among this signature, we found that the tumor necrosis factor-α pathway was up-regulated in lung compared to liver metastases, and inhibition of this pathway affected metastasis diversity. These results highlight that the cellular and molecular heterogeneity observed in metastases is largely dictated by the tumor microenvironment.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Neoplasias Pulmonares , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Transcriptoma , Microambiente Tumoral/genética
17.
Cancers (Basel) ; 13(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800279

RESUMO

Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca2+ binding and membrane-associated protein. Reported roles of Annexin A1 in breast cancer progression and metastasis are contradictory. Here, we sought to clarify the functions of Annexin A1 in the development and progression of TNBC. The association of Annexin A1 expression with patient prognosis in subtypes of TNBC was examined. Annexin A1 was stably knocked down in a panel of human and murine TNBC cell lines with high endogenous Annexin A1 expression that were then evaluated for orthotopic growth and spontaneous metastasis in vivo and for alterations in cell morphology in vitro. The impact of Annexin A1 knockdown on the expression of genes involved in mammary epithelial cell differentia tion and epithelial to mesenchymal transition was also determined. Annexin A1 mRNA levels correlated with poor patient prognosis in basal-like breast tumors and also in the basal-like 2 subset of TNBCs. Unexpectedly, loss of Annexin A1 expression had no effect on either primary tumor growth or spontaneous metastasis of MDA-MB-231_HM xenografts, but abrogated the growth rate of SUM149 orthotopic tumors. In an MMTV-PyMT driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation in both immuno-competent and immuno-deficient mice and induced epithelial to mesenchymal transition and upregulation of basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1- population containing putative tumor initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in a model of human breast cancer and suggest that some basal-like TNBCs may require high endogenous tumor cell Annexin A1 expression for continued growth.

18.
Breast Cancer Res Treat ; 183(3): 565-575, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32696317

RESUMO

BACKGROUND: Breast cancer (BCa) mortality is decreasing with early detection and improvement in therapies. The incidence of BCa, however, continues to increase, particularly estrogen-receptor-positive (ER +) subtypes. One of the greatest modifiers of ER + BCa risk is childbearing (parity), with BCa risk halved in young multiparous mothers. Despite convincing epidemiological data, the biology that underpins this protection remains unclear. Parity-induced protection has been postulated to be due to a decrease in mammary stem cells (MaSCs); however, reports to date have provided conflicting data. METHODS: We have completed rigorous functional testing of repopulating activity in parous mice using unfractionated and MaSC (CD24midCD49fhi)-enriched populations. We also developed a novel serial transplant method to enable us to assess self-renewal of MaSC following pregnancy. Lastly, as each pregnancy confers additional BCa protection, we subjected mice to multiple rounds of pregnancy to assess whether additional pregnancies impact MaSC activity. RESULTS: Here, we report that while repopulating activity in the mammary gland is reduced by parity in the unfractionated gland, it is not due to a loss in the classically defined MaSC (CD24+CD49fhi) numbers or function. Self-renewal was unaffected by parity and additional rounds of pregnancy also did not lead to a decrease in MaSC activity. CONCLUSIONS: Our data show instead that parity impacts on the stem-like activity of cells outside the MaSC population.


Assuntos
Glândulas Mamárias Animais , Células-Tronco , Animais , Feminino , Integrina beta1 , Camundongos , Paridade , Gravidez
19.
Int J Cancer ; 147(1): 230-243, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31957002

RESUMO

Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes, due to the high propensity to develop distant metastases. Hence, new molecular targets for therapeutic intervention are needed for TNBC. We recently conducted a rigorous phenotypic and genomic characterization of four isogenic populations of MDA-MB-231 human triple-negative breast cancer cells that possess a range of intrinsic spontaneous metastatic capacities in vivo, ranging from nonmetastatic (MDA-MB-231_ATCC) to highly metastatic to lung, liver, spleen and spine (MDA-MB-231_HM). Gene expression profiling of primary tumours by RNA-Seq identified the fibroblast growth factor homologous factor, FGF13, as highly upregulated in aggressively metastatic MDA-MB-231_HM tumours. Clinically, higher FGF13 mRNA expression was associated with significantly worse relapse free survival in both luminal A and basal-like human breast cancers but was not associated with other clinical variables and was not upregulated in primary tumours relative to normal mammary gland. Stable FGF13 depletion restricted in vitro colony forming ability in MDA-MB-231_HM TNBC cells but not in oestrogen receptor (ER)-positive MCF-7 or MDA-MB-361 cells. However, despite augmenting MDA-MB-231_HM cell migration and invasion in vitro, FGF13 suppression almost completely blocked the spontaneous metastasis of MDA-MB-231_HM orthotopic xenografts to both lung and liver while having negligible impact on primary tumour growth. Together, these data indicate that FGF13 may represent a therapeutic target for blocking metastatic outgrowth of certain TNBCs. Further evaluation of the roles of individual FGF13 protein isoforms in progression of the different subtypes of breast cancer is warranted.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Células-Tronco Neoplásicas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima
20.
Cancer Res ; 80(6): 1304-1315, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941699

RESUMO

Metastasis is the major cause of death in patients with cancer; with no therapeutic cure, treatments remain largely palliative. As such, new targets and therapeutic strategies are urgently required. Here, we show that bone morphogenetic protein-4 (BMP4) blocks metastasis in animal models of breast cancer and predicts improved survival in patients. In preclinical models of spontaneous metastasis, BMP4 acted as an autocrine mediator to modulate a range of known metastasis-regulating genes, including Smad7, via activation of canonical BMP-SMAD signaling. Restored BMP4 expression or therapeutically administered BMP4 protein, blocked metastasis and increased survival by sensitizing cancer cells to anoikis, thereby reducing the number of circulating tumor cells. Gene silencing of Bmp4 or its downstream mediator Smad7, reversed this phenotype. Administration of recombinant BMP4 markedly reduced spontaneous metastasis to lung and bone. Elevated levels of BMP4 and SMAD7 were prognostic for improved recurrence-free survival and overall survival in patients with breast cancer, indicating the importance of canonical BMP4 signaling in the suppression of metastasis and highlighting new avenues for therapy against metastatic disease. SIGNIFICANCE: Targeting the BMP4-SMAD7 signaling axis presents a novel therapeutic strategy to combat metastatic breast cancer, a disease that has had no reduction in patient mortality over 20 years. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/6/1304/F1.large.jpg.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Ósseas/genética , Neoplasias da Mama/patologia , Proteína Smad7/metabolismo , Animais , Comunicação Autócrina , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/uso terapêutico , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Linhagem Celular Tumoral/transplante , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação para Baixo , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Animais/patologia , Mastectomia , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Prognóstico , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/genética , Proteína Smad4/metabolismo , Proteína Smad7/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA